Cardea
cardea.problem_definition.
MissedAppointment
Defines the problem of missed appointment
Predict whether the patient will show to the appointment or not.
target_label_column_name (str) – The target label of the prediction problem.
target_entity (str) – Name of the entity containing the target label.
cutoff_time_label (str) – The cutoff time label of the prediction problem.
cutoff_entity (str) – Name of the entity containing the cutoff time label.
prediction_type (str) – The type of the machine learning prediction.
__init__
Initialize self. See help(type(self)) for accurate signature.
Methods
__init__()
Initialize self.
check_for_missing_values_in_target_label(…)
check_for_missing_values_in_target_label
Checks if there is a missing value in the target label.
check_target_label(entity_set, …)
check_target_label
Checks if target label exists in the entity set.
generate_cutoff_times(entity_set)
generate_cutoff_times
Generates cutoff times for the prediction problem.
generate_target_label(entity_set, …)
generate_target_label
Generates target labels if the entityset is missing labels.
unify_cutoff_time_admission_time(es, …)
unify_cutoff_time_admission_time
Process records in the entity that contains cutoff times based on shared days and time.
unify_cutoff_time_discharge_time(es, …)
unify_cutoff_time_discharge_time
unify_cutoff_times_days_admission_time(df, …)
unify_cutoff_times_days_admission_time
Unify records cutoff times based on shared days.
unify_cutoff_times_days_discharge_time(df, …)
unify_cutoff_times_days_discharge_time
unify_cutoff_times_hours_admission_time(df, …)
unify_cutoff_times_hours_admission_time
Unify records cutoff times based on shared time.
unify_cutoff_times_hours_discharge_time(df, …)
unify_cutoff_times_hours_discharge_time
Attributes
cutoff_entity
cutoff_time_label
prediction_type
target_entity
target_label_column_name