from mit_d3m import load_dataset
dataset = load_dataset('4550_MiceProtein')
X = dataset.X
y = dataset.y
context = dataset.context
1.0
mlprimitives.preprocessing.ClassEncoder
featuretools.dfs
sklearn.preprocessing.Imputer
sklearn.preprocessing.StandardScaler
xgboost.XGBClassifier
mlprimitives.preprocessing.ClassDecoder
mlprimitives.preprocessing.ClassEncoder#1
featuretools.dfs#1
"max_depth": 2
"encode": true
"remove_low_information": false
sklearn.preprocessing.Imputer#1
"missing_values": NaN
"axis": 0
"copy": true
"strategy": mean
sklearn.preprocessing.StandardScaler#1
"with_mean": true
"with_std": false
xgboost.XGBClassifier#1
"n_jobs": -1
"n_estimators": 622
"max_depth": 3
"learning_rate": 0.264779349195429
"gamma": 0.6480623858537286
"min_child_weight": 5
mlprimitives.preprocessing.ClassDecoder#1
ColIndex | ColName | ColType | Role |
---|---|---|---|
0 | d3mIndex | integer | index |
1 | MouseID | categorical | attribute |
2 | DYRK1A_N | real | attribute |
3 | ITSN1_N | real | attribute |
4 | BDNF_N | real | attribute |
5 | NR1_N | real | attribute |
6 | NR2A_N | real | attribute |
7 | pAKT_N | real | attribute |
8 | pBRAF_N | real | attribute |
9 | pCAMKII_N | real | attribute |
10 | pCREB_N | real | attribute |
11 | pELK_N | real | attribute |
12 | pERK_N | real | attribute |
13 | pJNK_N | real | attribute |
14 | PKCA_N | real | attribute |
15 | pMEK_N | real | attribute |
16 | pNR1_N | real | attribute |
17 | pNR2A_N | real | attribute |
18 | pNR2B_N | real | attribute |
19 | pPKCAB_N | real | attribute |
20 | pRSK_N | real | attribute |
21 | AKT_N | real | attribute |
22 | BRAF_N | real | attribute |
23 | CAMKII_N | real | attribute |
24 | CREB_N | real | attribute |
25 | ELK_N | real | attribute |
26 | ERK_N | real | attribute |
27 | GSK3B_N | real | attribute |
28 | JNK_N | real | attribute |
29 | MEK_N | real | attribute |
30 | TRKA_N | real | attribute |
31 | RSK_N | real | attribute |
32 | APP_N | real | attribute |
33 | Bcatenin_N | real | attribute |
34 | SOD1_N | real | attribute |
35 | MTOR_N | real | attribute |
36 | P38_N | real | attribute |
37 | pMTOR_N | real | attribute |
38 | DSCR1_N | real | attribute |
39 | AMPKA_N | real | attribute |
40 | NR2B_N | real | attribute |
41 | pNUMB_N | real | attribute |
42 | RAPTOR_N | real | attribute |
43 | TIAM1_N | real | attribute |
44 | pP70S6_N | real | attribute |
45 | NUMB_N | real | attribute |
46 | P70S6_N | real | attribute |
47 | pGSK3B_N | real | attribute |
48 | pPKCG_N | real | attribute |
49 | CDK5_N | real | attribute |
50 | S6_N | real | attribute |
51 | ADARB1_N | real | attribute |
52 | AcetylH3K9_N | real | attribute |
53 | RRP1_N | real | attribute |
54 | BAX_N | real | attribute |
55 | ARC_N | real | attribute |
56 | ERBB4_N | real | attribute |
57 | nNOS_N | real | attribute |
58 | Tau_N | real | attribute |
59 | GFAP_N | real | attribute |
60 | GluR3_N | real | attribute |
61 | GluR4_N | real | attribute |
62 | IL1B_N | real | attribute |
63 | P3525_N | real | attribute |
64 | pCASP9_N | real | attribute |
65 | PSD95_N | real | attribute |
66 | SNCA_N | real | attribute |
67 | Ubiquitin_N | real | attribute |
68 | pGSK3B_Tyr216_N | real | attribute |
69 | SHH_N | real | attribute |
70 | BAD_N | real | attribute |
71 | BCL2_N | real | attribute |
72 | pS6_N | real | attribute |
73 | pCFOS_N | real | attribute |
74 | SYP_N | real | attribute |
75 | H3AcK18_N | real | attribute |
76 | EGR1_N | real | attribute |
77 | H3MeK4_N | real | attribute |
78 | CaNA_N | real | attribute |
79 | Genotype | categorical | attribute |
80 | Treatment | categorical | attribute |
81 | Behavior | categorical | attribute |
82 | class | categorical | suggestedTarget |