mit_d3m.dataset module

Classes

D3MDS(dataset, problem)

D3MDataset(dataset)

D3MProblem(problem)

Functions

pythonize(name)

class mit_d3m.dataset.D3MDS(dataset, problem)[source]

Bases: object

Methods

get_columns()

get_data()

get_data_modality()

get_metric()

get_problem_id()

get_related_resources(data_modality)

get_resources_dir(data_modality)

get_task_subtype()

get_task_type()

load_graphs()

dataset = None
get_columns()[source]
get_data()[source]
get_data_modality()[source]
get_metric()[source]
get_problem_id()[source]
get_resources_dir(data_modality)[source]
get_task_subtype()[source]
get_task_type()[source]
load_graphs()[source]
problem = None
class mit_d3m.dataset.D3MDataset(dataset)[source]

Bases: object

Methods

get_data_modality()

Detect the data modality based on the resource_types.

get_datasetID()

Get the datasetID from datasetDoc.

get_dataset_schema_version()

Get the dataset schema version that was used to create this dataset.

get_graph_resources()

get_graphs_as_nx()

get_image_path()

Returns the path of the directory containing images if they exist in this dataset.

get_learning_data()

Get the contents of learningData.doc as a DataFrame.

get_learning_data_columns()

get_related_resource_names(resource_type)

get_resource_types()

get_text_path()

Returns the path of the directory containing text if they exist in this dataset.

dsDoc = None
dsHome = None
get_data_modality()[source]

Detect the data modality based on the resource_types.

resource_types == [‘table’] => ‘single_table’ resource_types == [‘something_else’…] => ‘something_else’ # this is not likely resource_types == [‘table’, ‘table’…] => ‘multi_table’ resource_types == [‘table’, ‘something_else’…] => ‘something_else’

get_datasetID()[source]

Get the datasetID from datasetDoc.

get_dataset_schema_version()[source]

Get the dataset schema version that was used to create this dataset.

get_graph_resources()[source]
get_graphs_as_nx()[source]
get_image_path()[source]

Returns the path of the directory containing images if they exist in this dataset.

get_learning_data()[source]

Get the contents of learningData.doc as a DataFrame.

get_learning_data_columns()[source]
get_resource_types()[source]
get_text_path()[source]

Returns the path of the directory containing text if they exist in this dataset.

learningDataFile = None
class mit_d3m.dataset.D3MProblem(problem)[source]

Bases: object

Methods

get_performance_metrics()

get_problem_id()

Get the problemID from problemDoc.

get_problem_schema_version()

Get the problem schema version that was used to create this dataset.

get_target_column_names()

get_task_subtype()

get_task_type()

get_performance_metrics()[source]
get_problem_id()[source]

Get the problemID from problemDoc.

get_problem_schema_version()[source]

Get the problem schema version that was used to create this dataset.

get_target_column_names()[source]
get_task_subtype()[source]
get_task_type()[source]
prDoc = None
prHome = None
splitsFile = None
mit_d3m.dataset.pythonize(name)[source]