btb.tuning.metamodels.gaussian_process module¶
-
class
btb.tuning.metamodels.gaussian_process.GaussianCopulaProcessMetaModel[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModelGaussianCopulaProcessMetaModel class.
This class represents a meta-model using an underlying
GaussianProcessRegressorfromsklearn.gaussian_processapplyingcopulas.univariate.Univariatetransformations to the input data and afterwards reverts it for the predictions.During the
fitprocess, this metamodel trains a univariate copula for each hyperparameter to then compute the cumulative distribution of these. Once the cumulative distribution has been calculated, we calculate the inverse of the normal cumulative distribution usingscipy.stats.normand use these transformations to train theGaussianProcessRegressormodel.When predicting the output value, an inverse of the normal cumulative distribution is computed to the normal cumulative distribution, using the previously trained univariate copula with the input data of the score.
-
_MODEL_KWARGS¶ Dictionary with the default
kwargsfor theGaussianProcessRegressorinstantiation.- Type
dict
-
_MODEL_CLASS¶ Class to be instantiated and used for the
self._modelinstantiation. In this casesklearn.gaussian_process.GaussainProcessRegressor- Type
type
-
-
class
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModel[source]¶ Bases:
btb.tuning.metamodels.base.BaseMetaModelGaussianProcessMetaModel class.
This class represents a meta-model using an underlying
GaussianProcessRegressorfromsklearn.gaussian_process.-
_MODEL_KWARGS¶ Dictionary with the default
kwargsfor theGaussianProcessRegressorinstantiation.- Type
dict
-
_MODEL_CLASS¶ Class to be instantiated and used for the
self._modelinstantiation. In this casesklearn.gaussian_process.GaussainProcessRegressor- Type
type
-