btb.tuning.tuners package¶
Submodules¶
Module contents¶
Package where all the available tuners are imported.
-
class
btb.tuning.tuners.GCPEiTuner(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianCopulaProcessMetaModel,btb.tuning.tuners.gaussian_process.GPEiTunerGaussian Copula Process Expected Improvement Tuner.
This class uses a
GaussianProcessRegressormodel from thesklearn.gaussian_processpackage, using anExpectedImprovementfunction to return the better configurations predicted from the meta model that converts the input data using aUnivariatecopula.
-
class
btb.tuning.tuners.GCPTuner(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianCopulaProcessMetaModel,btb.tuning.tuners.gaussian_process.GPTunerGaussian Copula Process Tuner.
This class uses a
GaussianProcessRegressormodel from thesklearn.gaussian_processpackage, using anumpy.argmaxfunction to return the better configurations predicted from the meta model that converts the input data using aUnivariatecopula.
-
class
btb.tuning.tuners.GPEiTuner(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModel,btb.tuning.acquisition.expected_improvement.ExpectedImprovementAcquisition,btb.tuning.tuners.base.BaseMetaModelTunerGaussian Process Expected Improvement Tuner.
This class uses a
GaussianProcessRegressormodel from thesklearn.gaussian_processpackage, using anExpectedImprovementfunction to return the better configurations predicted from the model.
-
class
btb.tuning.tuners.GPTuner(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModel,btb.tuning.acquisition.predicted_score.PredictedScoreAcquisition,btb.tuning.tuners.base.BaseMetaModelTunerGaussian Process Tuner.
This class uses a
GaussianProcessRegressormodel from thesklearn.gaussian_processpackage, using anumpy.argmaxfunction to return the better configurations predicted from the model.