btb.tuning.tuners package¶
Submodules¶
Module contents¶
Package where all the available tuners are imported.
-
class
btb.tuning.tuners.
GCPEiTuner
(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianCopulaProcessMetaModel
,btb.tuning.tuners.gaussian_process.GPEiTuner
Gaussian Copula Process Expected Improvement Tuner.
This class uses a
GaussianProcessRegressor
model from thesklearn.gaussian_process
package, using anExpectedImprovement
function to return the better configurations predicted from the meta model that converts the input data using aUnivariate
copula.
-
class
btb.tuning.tuners.
GCPTuner
(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianCopulaProcessMetaModel
,btb.tuning.tuners.gaussian_process.GPTuner
Gaussian Copula Process Tuner.
This class uses a
GaussianProcessRegressor
model from thesklearn.gaussian_process
package, using anumpy.argmax
function to return the better configurations predicted from the meta model that converts the input data using aUnivariate
copula.
-
class
btb.tuning.tuners.
GPEiTuner
(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModel
,btb.tuning.acquisition.expected_improvement.ExpectedImprovementAcquisition
,btb.tuning.tuners.base.BaseMetaModelTuner
Gaussian Process Expected Improvement Tuner.
This class uses a
GaussianProcessRegressor
model from thesklearn.gaussian_process
package, using anExpectedImprovement
function to return the better configurations predicted from the model.
-
class
btb.tuning.tuners.
GPTuner
(tunable, maximize=True, num_candidates=1000, min_trials=5, length_scale=0.1)[source]¶ Bases:
btb.tuning.metamodels.gaussian_process.GaussianProcessMetaModel
,btb.tuning.acquisition.predicted_score.PredictedScoreAcquisition
,btb.tuning.tuners.base.BaseMetaModelTuner
Gaussian Process Tuner.
This class uses a
GaussianProcessRegressor
model from thesklearn.gaussian_process
package, using anumpy.argmax
function to return the better configurations predicted from the model.