MLPrimitives
Getting Started
MLPrimitives
Overview
Why did we create this library?
Installation
Requirements
Install with pip
Quickstart
Running a Primitive
1. Load a Primitive
2. Load some data
3. Fit the primitive
4. Produce results
Tuning a Primitive
1. Load another primitive
2. Split the dataset
3. Fit the new primitive
4. Make predictions
5. Evalute the performance
6. Set new hyperparameter values
7. Re-evaluate the performance
What’s Next?
Basic Concepts
What is a primitive?
Types of Primitives
Function Primitives
Class Primitives
Types of Integrations
Directly integrable primitives
Examples
Primitives that require a Python adapter
Examples
Custom primitives
Examples
Candidate primitives
Community
Community
Types of contributions
Reporting Issues
Request new primitives
Request new features
Report Bugs
Ask for Documentation
Write Documentation
Contribute code
Contributing
General Coding Guidelines
Unit Testing Guidelines
Annotations
Creating an annotation for a new primitive
Modifying an existing annotation
Creating a new version of an existing annotation
Adapters
Creating a new Adapter
Modifying an existing Adapter
Custom Primitives
Creating a Custom Primitive
Modifying a Custom Primitive
Resources
API Reference
Subpackages
mlprimitives.adapters package
Submodules
mlprimitives.candidates package
Subpackages
Submodules
mlprimitives.custom package
Submodules
Submodules
mlprimitives.cli module
mlprimitives.datasets module
mlprimitives.evaluation module
mlprimitives.utils module
Credits
Development Lead
Contributors
History
0.3.5 - 2023-04-14
General Imporvements
0.3.4 - 2023-01-24
General Imporvements
0.3.3 - 2023-01-20
General Imporvements
Adapter Improvements
0.3.2 - 2021-11-09
Adapter Improvements
0.3.1 - 2021-10-07
Adapter Improvements
General Imporvements
0.3.0 - 2021-01-09
New Primitives
Primitive Improvements
General Improvements
0.2.5 - 2020-07-29
Primitive Improvements
Bug Fixes
New Primitives
0.2.4 - 2020-01-30
New Primitives
Primitive Improvements
Bug Fixes
0.2.3 - 2019-11-14
New Primitives
Primitive Improvements
Bug Fixes
0.2.2 - 2019-10-08
New Primitives
Primitive Improvements
0.2.1 - 2019-09-09
New Primitives
Primitive Improvements
Bug Fixes
0.2.0
New Features
Primitive Improvements
Bug Fixes
0.1.10
New Features
New Pipelines
Primitive Improvements
0.1.9
New Features
New Primitives
Primitive Improvements
0.1.8
New Primitives
New Features
0.1.7
General Improvements
New Primitives
Bug Fixes
0.1.6
General Improvements
New Primitives
0.1.5
New Primitives
General Improvements
Bug Fixes
0.1.4
New Primitives
Bug Fixes
0.1.3
New Features
0.1.2
New Features
Bug Fixes
0.1.1
New Features
Bug Fixes
0.1.0
MLPrimitives
Docs
»
Index
Edit on GitHub
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
|
W
|
Z
A
add_relationship() (in module mlprimitives.adapters.featuretools)
ArgumentParser (class in mlprimitives.cli)
ARIMA (class in mlprimitives.adapters.statsmodels)
AudioPadder (class in mlprimitives.candidates.audio_padding)
B
build_layer() (in module mlprimitives.adapters.keras)
C
calculate_feature_matrix() (mlprimitives.adapters.featuretools.DFS method)
call() (mlprimitives.candidates.timeseries.cyclegan.RandomWeightedAverage method)
CategoricalEncoder (class in mlprimitives.custom.feature_extraction)
ClassDecoder (class in mlprimitives.custom.preprocessing)
ClassEncoder (class in mlprimitives.custom.preprocessing)
CommunityBestPartition (class in mlprimitives.adapters.community)
compute_output_shape() (mlprimitives.candidates.timeseries.cyclegan.RandomWeightedAverage method)
count() (mlprimitives.custom.counters.Counter method)
count_above() (in module mlprimitives.custom.timeseries_anomalies)
count_features() (in module mlprimitives.custom.counters)
Counter (class in mlprimitives.custom.counters)
cutoff_window_sequences() (in module mlprimitives.custom.timeseries_preprocessing)
CycleGAN (class in mlprimitives.candidates.timeseries.cyclegan)
D
data (mlprimitives.datasets.Dataset attribute)
Dataset (class in mlprimitives.datasets)
DatetimeFeaturizer (class in mlprimitives.custom.feature_extraction)
decode() (mlprimitives.custom.preprocessing.ClassDecoder method)
deltas() (in module mlprimitives.custom.timeseries_anomalies)
describe() (mlprimitives.datasets.Dataset method)
description (mlprimitives.datasets.Dataset attribute)
detect_language() (mlprimitives.custom.text.TextCleaner static method)
DFS (class in mlprimitives.adapters.featuretools)
dfs() (mlprimitives.adapters.featuretools.DFS method)
E
encode() (mlprimitives.custom.preprocessing.ClassEncoder method)
energy() (in module mlprimitives.candidates.audio_featurization)
energy_entropy() (in module mlprimitives.candidates.audio_featurization)
entity_from_dataframe() (in module mlprimitives.adapters.featuretools)
error() (mlprimitives.cli.ArgumentParser method)
ESTIMATOR (mlprimitives.custom.feature_selection.EstimatorFeatureSelector attribute)
,
[1]
(mlprimitives.custom.feature_selection.ExtraTreesClassifierFeatureSelector attribute)
(mlprimitives.custom.feature_selection.ExtraTreesRegressorFeatureSelector attribute)
(mlprimitives.custom.feature_selection.LassoFeatureSelector attribute)
EstimatorFeatureSelector (class in mlprimitives.custom.feature_selection)
ExtraTreesClassifierFeatureSelector (class in mlprimitives.custom.feature_selection)
ExtraTreesRegressorFeatureSelector (class in mlprimitives.custom.feature_selection)
F
FeatureExtractor (class in mlprimitives.custom.feature_extraction)
features (mlprimitives.adapters.featuretools.DFS attribute)
featurize_audio() (in module mlprimitives.candidates.audio_featurization)
featurize_segments() (in module mlprimitives.candidates.audio_featurization)
FFT() (in module mlprimitives.candidates.audio_featurization)
find_anomalies() (in module mlprimitives.custom.timeseries_anomalies)
fit() (mlprimitives.adapters.keras.Sequential method)
(mlprimitives.adapters.lightfm.LightFM method)
(mlprimitives.candidates.audio_padding.AudioPadder method)
(mlprimitives.candidates.dsp.SpectralMask method)
(mlprimitives.candidates.timeseries.cyclegan.CycleGAN method)
(mlprimitives.custom.feature_extraction.CategoricalEncoder method)
(mlprimitives.custom.feature_extraction.FeatureExtractor method)
(mlprimitives.custom.feature_extraction.OneHotLabelEncoder method)
(mlprimitives.custom.feature_extraction.StringVectorizer method)
(mlprimitives.custom.feature_selection.EstimatorFeatureSelector method)
(mlprimitives.custom.preprocessing.ClassDecoder method)
(mlprimitives.custom.preprocessing.ClassEncoder method)
(mlprimitives.custom.preprocessing.RangeScaler method)
(mlprimitives.custom.preprocessing.RangeUnscaler method)
(mlprimitives.custom.text.TextCleaner method)
(mlprimitives.custom.trivial.TrivialPredictor method)
fit_freq_min_max() (mlprimitives.candidates.dsp.SpectralMask method)
fit_freq_std_dev() (mlprimitives.candidates.dsp.SpectralMask method)
fit_transform() (mlprimitives.custom.feature_extraction.FeatureExtractor method)
(mlprimitives.custom.feature_extraction.OneHotLabelEncoder method)
(mlprimitives.custom.feature_selection.EstimatorFeatureSelector method)
G
GaussianBlur() (in module mlprimitives.adapters.cv2)
get_columns() (mlprimitives.adapters.lightfm.LightFM method)
get_context() (in module mlprimitives.evaluation)
get_counts() (mlprimitives.custom.counters.Counter method)
get_length() (mlprimitives.custom.trivial.TrivialPredictor method)
get_scorer() (in module mlprimitives.evaluation)
get_splits() (mlprimitives.datasets.Dataset method)
get_stopwords() (mlprimitives.custom.text.TextCleaner class method)
get_value() (in module mlprimitives.evaluation)
graph_feature_extraction() (in module mlprimitives.adapters.networkx)
graph_pairs_feature_extraction() (in module mlprimitives.adapters.networkx)
H
hog() (in module mlprimitives.adapters.skimage)
I
image_transform() (in module mlprimitives.utils)
import_object() (in module mlprimitives.utils)
intervals_to_mask() (in module mlprimitives.custom.timeseries_preprocessing)
L
LassoFeatureSelector (class in mlprimitives.custom.feature_selection)
LightFM (class in mlprimitives.adapters.lightfm)
load_amazon() (in module mlprimitives.datasets)
load_boston() (in module mlprimitives.datasets)
load_boston_multitask() (in module mlprimitives.datasets)
load_census() (in module mlprimitives.datasets)
load_dataset() (in module mlprimitives.datasets)
load_dic28() (in module mlprimitives.datasets)
load_handgeometry() (in module mlprimitives.datasets)
load_iris() (in module mlprimitives.datasets)
load_jester() (in module mlprimitives.datasets)
load_newsgroups() (in module mlprimitives.datasets)
load_nomination() (in module mlprimitives.datasets)
load_personae() (in module mlprimitives.datasets)
load_primitive() (in module mlprimitives)
load_reviews() (in module mlprimitives.datasets)
load_umls() (in module mlprimitives.datasets)
load_usps() (in module mlprimitives.datasets)
load_wikiqa() (in module mlprimitives.datasets)
M
main() (in module mlprimitives.cli)
mlprimitives (module)
mlprimitives.adapters (module)
mlprimitives.adapters.community (module)
mlprimitives.adapters.cv2 (module)
mlprimitives.adapters.featuretools (module)
mlprimitives.adapters.keras (module)
mlprimitives.adapters.lightfm (module)
mlprimitives.adapters.networkx (module)
mlprimitives.adapters.pandas (module)
mlprimitives.adapters.skimage (module)
mlprimitives.adapters.statsmodels (module)
mlprimitives.candidates (module)
mlprimitives.candidates.audio_featurization (module)
mlprimitives.candidates.audio_padding (module)
mlprimitives.candidates.dsp (module)
mlprimitives.candidates.timeseries (module)
mlprimitives.candidates.timeseries.cyclegan (module)
mlprimitives.cli (module)
mlprimitives.custom (module)
mlprimitives.custom.counters (module)
mlprimitives.custom.feature_extraction (module)
mlprimitives.custom.feature_selection (module)
mlprimitives.custom.preprocessing (module)
mlprimitives.custom.text (module)
mlprimitives.custom.timeseries_anomalies (module)
mlprimitives.custom.timeseries_preprocessing (module)
mlprimitives.custom.trivial (module)
mlprimitives.datasets (module)
mlprimitives.evaluation (module)
mlprimitives.utils (module)
N
name (mlprimitives.datasets.Dataset attribute)
next_power_of_2() (in module mlprimitives.candidates.dsp)
np_aggregate() (in module mlprimitives.utils)
O
OneHotLabelEncoder (class in mlprimitives.custom.feature_extraction)
P
predict() (mlprimitives.adapters.keras.Sequential method)
(mlprimitives.adapters.lightfm.LightFM method)
(mlprimitives.adapters.statsmodels.ARIMA method)
(mlprimitives.candidates.timeseries.cyclegan.CycleGAN method)
(mlprimitives.custom.trivial.TrivialPredictor method)
produce() (mlprimitives.adapters.community.CommunityBestPartition method)
(mlprimitives.candidates.audio_padding.AudioPadder method)
(mlprimitives.candidates.dsp.SpectralMask method)
(mlprimitives.custom.text.TextCleaner method)
R
rand_attr1() (in module mlprimitives.candidates.audio_featurization)
RandomWeightedAverage (class in mlprimitives.candidates.timeseries.cyclegan)
RangeScaler (class in mlprimitives.custom.preprocessing)
RangeUnscaler (class in mlprimitives.custom.preprocessing)
RE_ACCENTS (mlprimitives.custom.text.TextCleaner attribute)
RE_NON_ALNUM (mlprimitives.custom.text.TextCleaner attribute)
RE_NON_ALPHA (mlprimitives.custom.text.TextCleaner attribute)
RE_SYMBOLS (mlprimitives.custom.text.TextCleaner attribute)
regression_errors() (in module mlprimitives.custom.timeseries_anomalies)
resample() (in module mlprimitives.adapters.pandas)
rolling_window_sequences() (in module mlprimitives.custom.timeseries_preprocessing)
S
scale() (mlprimitives.custom.preprocessing.RangeScaler method)
score() (mlprimitives.datasets.Dataset method)
score_anomalies() (in module mlprimitives.candidates.timeseries.cyclegan)
score_pipeline() (in module mlprimitives.evaluation)
selector (mlprimitives.custom.feature_selection.EstimatorFeatureSelector attribute)
Sequential (class in mlprimitives.adapters.keras)
spectral_centroid_and_spread() (in module mlprimitives.candidates.audio_featurization)
spectral_entropy() (in module mlprimitives.candidates.audio_featurization)
spectral_flux() (in module mlprimitives.candidates.audio_featurization)
spectral_rolloff() (in module mlprimitives.candidates.audio_featurization)
SpectralMask (class in mlprimitives.candidates.dsp)
STOPWORDS (mlprimitives.custom.text.TextCleaner attribute)
StringVectorizer (class in mlprimitives.custom.feature_extraction)
T
target (mlprimitives.datasets.Dataset attribute)
TextCleaner (class in mlprimitives.custom.text)
time_segments_aggregate() (in module mlprimitives.custom.timeseries_preprocessing)
time_segments_average() (in module mlprimitives.custom.timeseries_preprocessing)
transform() (mlprimitives.custom.feature_extraction.FeatureExtractor method)
(mlprimitives.custom.feature_extraction.OneHotLabelEncoder method)
(mlprimitives.custom.feature_selection.EstimatorFeatureSelector method)
TrivialPredictor (class in mlprimitives.custom.trivial)
U
UniqueCounter (class in mlprimitives.custom.counters)
unscale() (mlprimitives.custom.preprocessing.RangeUnscaler method)
unstack() (in module mlprimitives.adapters.pandas)
V
VocabularyCounter (class in mlprimitives.custom.counters)
W
window_design() (mlprimitives.candidates.dsp.SpectralMask method)
Z
z_cost() (in module mlprimitives.custom.timeseries_anomalies)
zcr() (in module mlprimitives.candidates.audio_featurization)