Source code for sklearn.gaussian_process._gpr

"""Gaussian processes regression."""

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
# License: BSD 3 clause

import warnings
from operator import itemgetter

import numpy as np
from scipy.linalg import cholesky, cho_solve, solve_triangular
import scipy.optimize

from ..base import BaseEstimator, RegressorMixin, clone
from ..base import MultiOutputMixin
from .kernels import RBF, ConstantKernel as C
from ..utils import check_random_state
from ..utils.validation import check_array
from ..utils.optimize import _check_optimize_result
from ..utils.validation import _deprecate_positional_args


class GaussianProcessRegressor(MultiOutputMixin,
                               RegressorMixin, BaseEstimator):
    """Gaussian process regression (GPR).

    The implementation is based on Algorithm 2.1 of Gaussian Processes
    for Machine Learning (GPML) by Rasmussen and Williams.

    In addition to standard scikit-learn estimator API,
    GaussianProcessRegressor:

       * allows prediction without prior fitting (based on the GP prior)
       * provides an additional method sample_y(X), which evaluates samples
         drawn from the GPR (prior or posterior) at given inputs
       * exposes a method log_marginal_likelihood(theta), which can be used
         externally for other ways of selecting hyperparameters, e.g., via
         Markov chain Monte Carlo.

    Read more in the :ref:`User Guide <gaussian_process>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    kernel : kernel instance, default=None
        The kernel specifying the covariance function of the GP. If None is
        passed, the kernel ``ConstantKernel(1.0, constant_value_bounds="fixed"
        * RBF(1.0, length_scale_bounds="fixed")`` is used as default. Note that
        the kernel hyperparameters are optimized during fitting unless the
        bounds are marked as "fixed".

    alpha : float or ndarray of shape (n_samples,), default=1e-10
        Value added to the diagonal of the kernel matrix during fitting.
        This can prevent a potential numerical issue during fitting, by
        ensuring that the calculated values form a positive definite matrix.
        It can also be interpreted as the variance of additional Gaussian
        measurement noise on the training observations. Note that this is
        different from using a `WhiteKernel`. If an array is passed, it must
        have the same number of entries as the data used for fitting and is
        used as datapoint-dependent noise level. Allowing to specify the
        noise level directly as a parameter is mainly for convenience and
        for consistency with Ridge.

    optimizer : "fmin_l_bfgs_b" or callable, default="fmin_l_bfgs_b"
        Can either be one of the internally supported optimizers for optimizing
        the kernel's parameters, specified by a string, or an externally
        defined optimizer passed as a callable. If a callable is passed, it
        must have the signature::

            def optimizer(obj_func, initial_theta, bounds):
                # * 'obj_func' is the objective function to be minimized, which
                #   takes the hyperparameters theta as parameter and an
                #   optional flag eval_gradient, which determines if the
                #   gradient is returned additionally to the function value
                # * 'initial_theta': the initial value for theta, which can be
                #   used by local optimizers
                # * 'bounds': the bounds on the values of theta
                ....
                # Returned are the best found hyperparameters theta and
                # the corresponding value of the target function.
                return theta_opt, func_min

        Per default, the 'L-BGFS-B' algorithm from scipy.optimize.minimize
        is used. If None is passed, the kernel's parameters are kept fixed.
        Available internal optimizers are::

            'fmin_l_bfgs_b'

    n_restarts_optimizer : int, default=0
        The number of restarts of the optimizer for finding the kernel's
        parameters which maximize the log-marginal likelihood. The first run
        of the optimizer is performed from the kernel's initial parameters,
        the remaining ones (if any) from thetas sampled log-uniform randomly
        from the space of allowed theta-values. If greater than 0, all bounds
        must be finite. Note that n_restarts_optimizer == 0 implies that one
        run is performed.

    normalize_y : bool, default=False
        Whether the target values y are normalized, the mean and variance of
        the target values are set equal to 0 and 1 respectively. This is
        recommended for cases where zero-mean, unit-variance priors are used.
        Note that, in this implementation, the normalisation is reversed
        before the GP predictions are reported.

        .. versionchanged:: 0.23

    copy_X_train : bool, default=True
        If True, a persistent copy of the training data is stored in the
        object. Otherwise, just a reference to the training data is stored,
        which might cause predictions to change if the data is modified
        externally.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation used to initialize the centers.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    Attributes
    ----------
    X_train_ : array-like of shape (n_samples, n_features) or list of object
        Feature vectors or other representations of training data (also
        required for prediction).

    y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values in training data (also required for prediction)

    kernel_ : kernel instance
        The kernel used for prediction. The structure of the kernel is the
        same as the one passed as parameter but with optimized hyperparameters

    L_ : array-like of shape (n_samples, n_samples)
        Lower-triangular Cholesky decomposition of the kernel in ``X_train_``

    alpha_ : array-like of shape (n_samples,)
        Dual coefficients of training data points in kernel space

    log_marginal_likelihood_value_ : float
        The log-marginal-likelihood of ``self.kernel_.theta``

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = DotProduct() + WhiteKernel()
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.3680...
    >>> gpr.predict(X[:2,:], return_std=True)
    (array([653.0..., 592.1...]), array([316.6..., 316.6...]))

    """
    @_deprecate_positional_args
    def __init__(self, kernel=None, *, alpha=1e-10,
                 optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0,
                 normalize_y=False, copy_X_train=True, random_state=None):
        self.kernel = kernel
        self.alpha = alpha
        self.optimizer = optimizer
        self.n_restarts_optimizer = n_restarts_optimizer
        self.normalize_y = normalize_y
        self.copy_X_train = copy_X_train
        self.random_state = random_state

    def fit(self, X, y):
        """Fit Gaussian process regression model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Feature vectors or other representations of training data.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values

        Returns
        -------
        self : returns an instance of self.
        """
        if self.kernel is None:  # Use an RBF kernel as default
            self.kernel_ = C(1.0, constant_value_bounds="fixed") \
                * RBF(1.0, length_scale_bounds="fixed")
        else:
            self.kernel_ = clone(self.kernel)

        self._rng = check_random_state(self.random_state)

        if self.kernel_.requires_vector_input:
            X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
                                       ensure_2d=True, dtype="numeric")
        else:
            X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
                                       ensure_2d=False, dtype=None)

        # Normalize target value
        if self.normalize_y:
            self._y_train_mean = np.mean(y, axis=0)
            self._y_train_std = np.std(y, axis=0)

            # Remove mean and make unit variance
            y = (y - self._y_train_mean) / self._y_train_std

        else:
            self._y_train_mean = np.zeros(1)
            self._y_train_std = 1

        if np.iterable(self.alpha) \
           and self.alpha.shape[0] != y.shape[0]:
            if self.alpha.shape[0] == 1:
                self.alpha = self.alpha[0]
            else:
                raise ValueError("alpha must be a scalar or an array"
                                 " with same number of entries as y.(%d != %d)"
                                 % (self.alpha.shape[0], y.shape[0]))

        self.X_train_ = np.copy(X) if self.copy_X_train else X
        self.y_train_ = np.copy(y) if self.copy_X_train else y

        if self.optimizer is not None and self.kernel_.n_dims > 0:
            # Choose hyperparameters based on maximizing the log-marginal
            # likelihood (potentially starting from several initial values)
            def obj_func(theta, eval_gradient=True):
                if eval_gradient:
                    lml, grad = self.log_marginal_likelihood(
                        theta, eval_gradient=True, clone_kernel=False)
                    return -lml, -grad
                else:
                    return -self.log_marginal_likelihood(theta,
                                                         clone_kernel=False)

            # First optimize starting from theta specified in kernel
            optima = [(self._constrained_optimization(obj_func,
                                                      self.kernel_.theta,
                                                      self.kernel_.bounds))]

            # Additional runs are performed from log-uniform chosen initial
            # theta
            if self.n_restarts_optimizer > 0:
                if not np.isfinite(self.kernel_.bounds).all():
                    raise ValueError(
                        "Multiple optimizer restarts (n_restarts_optimizer>0) "
                        "requires that all bounds are finite.")
                bounds = self.kernel_.bounds
                for iteration in range(self.n_restarts_optimizer):
                    theta_initial = \
                        self._rng.uniform(bounds[:, 0], bounds[:, 1])
                    optima.append(
                        self._constrained_optimization(obj_func, theta_initial,
                                                       bounds))
            # Select result from run with minimal (negative) log-marginal
            # likelihood
            lml_values = list(map(itemgetter(1), optima))
            self.kernel_.theta = optima[np.argmin(lml_values)][0]
            self.kernel_._check_bounds_params()

            self.log_marginal_likelihood_value_ = -np.min(lml_values)
        else:
            self.log_marginal_likelihood_value_ = \
                self.log_marginal_likelihood(self.kernel_.theta,
                                             clone_kernel=False)

        # Precompute quantities required for predictions which are independent
        # of actual query points
        K = self.kernel_(self.X_train_)
        K[np.diag_indices_from(K)] += self.alpha
        try:
            self.L_ = cholesky(K, lower=True)  # Line 2
            # self.L_ changed, self._K_inv needs to be recomputed
            self._K_inv = None
        except np.linalg.LinAlgError as exc:
            exc.args = ("The kernel, %s, is not returning a "
                        "positive definite matrix. Try gradually "
                        "increasing the 'alpha' parameter of your "
                        "GaussianProcessRegressor estimator."
                        % self.kernel_,) + exc.args
            raise
        self.alpha_ = cho_solve((self.L_, True), self.y_train_)  # Line 3
        return self

    def predict(self, X, return_std=False, return_cov=False):
        """Predict using the Gaussian process regression model

        We can also predict based on an unfitted model by using the GP prior.
        In addition to the mean of the predictive distribution, also its
        standard deviation (return_std=True) or covariance (return_cov=True).
        Note that at most one of the two can be requested.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Query points where the GP is evaluated.

        return_std : bool, default=False
            If True, the standard-deviation of the predictive distribution at
            the query points is returned along with the mean.

        return_cov : bool, default=False
            If True, the covariance of the joint predictive distribution at
            the query points is returned along with the mean.

        Returns
        -------
        y_mean : ndarray of shape (n_samples, [n_output_dims])
            Mean of predictive distribution a query points.

        y_std : ndarray of shape (n_samples,), optional
            Standard deviation of predictive distribution at query points.
            Only returned when `return_std` is True.

        y_cov : ndarray of shape (n_samples, n_samples), optional
            Covariance of joint predictive distribution a query points.
            Only returned when `return_cov` is True.
        """
        if return_std and return_cov:
            raise RuntimeError(
                "Not returning standard deviation of predictions when "
                "returning full covariance.")

        if self.kernel is None or self.kernel.requires_vector_input:
            X = check_array(X, ensure_2d=True, dtype="numeric")
        else:
            X = check_array(X, ensure_2d=False, dtype=None)

        if not hasattr(self, "X_train_"):  # Unfitted;predict based on GP prior
            if self.kernel is None:
                kernel = (C(1.0, constant_value_bounds="fixed") *
                          RBF(1.0, length_scale_bounds="fixed"))
            else:
                kernel = self.kernel
            y_mean = np.zeros(X.shape[0])
            if return_cov:
                y_cov = kernel(X)
                return y_mean, y_cov
            elif return_std:
                y_var = kernel.diag(X)
                return y_mean, np.sqrt(y_var)
            else:
                return y_mean
        else:  # Predict based on GP posterior
            K_trans = self.kernel_(X, self.X_train_)
            y_mean = K_trans.dot(self.alpha_)  # Line 4 (y_mean = f_star)

            # undo normalisation
            y_mean = self._y_train_std * y_mean + self._y_train_mean

            if return_cov:
                v = cho_solve((self.L_, True), K_trans.T)  # Line 5
                y_cov = self.kernel_(X) - K_trans.dot(v)  # Line 6

                # undo normalisation
                y_cov = y_cov * self._y_train_std**2

                return y_mean, y_cov
            elif return_std:
                # cache result of K_inv computation
                if self._K_inv is None:
                    # compute inverse K_inv of K based on its Cholesky
                    # decomposition L and its inverse L_inv
                    L_inv = solve_triangular(self.L_.T,
                                             np.eye(self.L_.shape[0]))
                    self._K_inv = L_inv.dot(L_inv.T)

                # Compute variance of predictive distribution
                y_var = self.kernel_.diag(X)
                y_var -= np.einsum("ij,ij->i",
                                   np.dot(K_trans, self._K_inv), K_trans)

                # Check if any of the variances is negative because of
                # numerical issues. If yes: set the variance to 0.
                y_var_negative = y_var < 0
                if np.any(y_var_negative):
                    warnings.warn("Predicted variances smaller than 0. "
                                  "Setting those variances to 0.")
                    y_var[y_var_negative] = 0.0

                # undo normalisation
                y_var = y_var * self._y_train_std**2

                return y_mean, np.sqrt(y_var)
            else:
                return y_mean

    def sample_y(self, X, n_samples=1, random_state=0):
        """Draw samples from Gaussian process and evaluate at X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Query points where the GP is evaluated.

        n_samples : int, default=1
            The number of samples drawn from the Gaussian process

        random_state : int, RandomState instance or None, default=0
            Determines random number generation to randomly draw samples.
            Pass an int for reproducible results across multiple function
            calls.
            See :term: `Glossary <random_state>`.

        Returns
        -------
        y_samples : ndarray of shape (n_samples_X, [n_output_dims], n_samples)
            Values of n_samples samples drawn from Gaussian process and
            evaluated at query points.
        """
        rng = check_random_state(random_state)

        y_mean, y_cov = self.predict(X, return_cov=True)
        if y_mean.ndim == 1:
            y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
        else:
            y_samples = \
                [rng.multivariate_normal(y_mean[:, i], y_cov,
                                         n_samples).T[:, np.newaxis]
                 for i in range(y_mean.shape[1])]
            y_samples = np.hstack(y_samples)
        return y_samples

    def log_marginal_likelihood(self, theta=None, eval_gradient=False,
                                clone_kernel=True):
        """Returns log-marginal likelihood of theta for training data.

        Parameters
        ----------
        theta : array-like of shape (n_kernel_params,) default=None
            Kernel hyperparameters for which the log-marginal likelihood is
            evaluated. If None, the precomputed log_marginal_likelihood
            of ``self.kernel_.theta`` is returned.

        eval_gradient : bool, default=False
            If True, the gradient of the log-marginal likelihood with respect
            to the kernel hyperparameters at position theta is returned
            additionally. If True, theta must not be None.

        clone_kernel : bool, default=True
            If True, the kernel attribute is copied. If False, the kernel
            attribute is modified, but may result in a performance improvement.

        Returns
        -------
        log_likelihood : float
            Log-marginal likelihood of theta for training data.

        log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
            Gradient of the log-marginal likelihood with respect to the kernel
            hyperparameters at position theta.
            Only returned when eval_gradient is True.
        """
        if theta is None:
            if eval_gradient:
                raise ValueError(
                    "Gradient can only be evaluated for theta!=None")
            return self.log_marginal_likelihood_value_

        if clone_kernel:
            kernel = self.kernel_.clone_with_theta(theta)
        else:
            kernel = self.kernel_
            kernel.theta = theta

        if eval_gradient:
            K, K_gradient = kernel(self.X_train_, eval_gradient=True)
        else:
            K = kernel(self.X_train_)

        K[np.diag_indices_from(K)] += self.alpha
        try:
            L = cholesky(K, lower=True)  # Line 2
        except np.linalg.LinAlgError:
            return (-np.inf, np.zeros_like(theta)) \
                if eval_gradient else -np.inf

        # Support multi-dimensional output of self.y_train_
        y_train = self.y_train_
        if y_train.ndim == 1:
            y_train = y_train[:, np.newaxis]

        alpha = cho_solve((L, True), y_train)  # Line 3

        # Compute log-likelihood (compare line 7)
        log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
        log_likelihood_dims -= np.log(np.diag(L)).sum()
        log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
        log_likelihood = log_likelihood_dims.sum(-1)  # sum over dimensions

        if eval_gradient:  # compare Equation 5.9 from GPML
            tmp = np.einsum("ik,jk->ijk", alpha, alpha)  # k: output-dimension
            tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis]
            # Compute "0.5 * trace(tmp.dot(K_gradient))" without
            # constructing the full matrix tmp.dot(K_gradient) since only
            # its diagonal is required
            log_likelihood_gradient_dims = \
                0.5 * np.einsum("ijl,jik->kl", tmp, K_gradient)
            log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1)

        if eval_gradient:
            return log_likelihood, log_likelihood_gradient
        else:
            return log_likelihood

    def _constrained_optimization(self, obj_func, initial_theta, bounds):
        if self.optimizer == "fmin_l_bfgs_b":
            opt_res = scipy.optimize.minimize(
                obj_func, initial_theta, method="L-BFGS-B", jac=True,
                bounds=bounds)
            _check_optimize_result("lbfgs", opt_res)
            theta_opt, func_min = opt_res.x, opt_res.fun
        elif callable(self.optimizer):
            theta_opt, func_min = \
                self.optimizer(obj_func, initial_theta, bounds=bounds)
        else:
            raise ValueError("Unknown optimizer %s." % self.optimizer)

        return theta_opt, func_min

    def _more_tags(self):
        return {'requires_fit': False}